Complex inorganic compositions at the nanoscale

While chemical pathways to nano-objects of oxides, metals and chalcogenides are the topic of intensive research since three decades, many other solids and compounds were only scarcely, if ever, reported at the nanoscale. These systems show at the bulk scale mechanical, catalytic, optical and electronic properties without equivalent among common oxides and metals. Nano-objects could exhibit important changes in these properties and novel processing possibilities. This is the motivation of this research axis devoted to the synthesis of nanostructures of original solids.

Metal non-oxides

  1. Transforming Nanocrystals into Superhard Boron Carbide Nanostructures, F. Igoa Saldaña, T. Gaudisson, S. Le Floch, B. Baptiste, L. Delbes, V. Malarewicz, O. Beyssac, K. Béneut, C. Coelho Diogo, C. Gervais, G. Rousse, K. Rasim, Y. Grin, A. Maître, Y. Le Godec*, D. Portehault*, ACS Nano,  18, 30473 (2024)
  2. Covalent Transition Metal Borosilicides: Reaction Pathways in Molten Salts for Water Oxidation Electrocatalysis, D. Janisch, F. Igoa Saldaña, E. De Rolland Dalon, C. VM Inocêncio, Y. Song, P.-O. Autran, A. Miche, S. Casale, D. Portehault, Journal of the American Chemical Society,  146, 21824 (2024)
  3. Heterostructured Cobalt Silicide Nanocrystals: Synthesis in Molten Salts, Ferromagnetism, and Electrocatalysis, Y. Song, I. Gómez-Recio, A. Ghoridi, F. Igoa Saldaña, D. Janisch, C. Sassoye, V. Dupuis, D. Hrabovsky, M. L. Ruiz-González, J. M. González-Calbet, S. Casale, A. Zitolo, B. Lassalle-Kaiser, C. Laberty-Robert, D. Portehault*, Journal of the American Chemical Society, 145, 19207 (2023)
  4. Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D Framework at the Nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting, R. Kumar, Y. Song, A. Ghoridi, P. Boullay, G. Rousse, C. Gervais, C. Coelho Diogo, H. Kabbour, C.  Sassoye, P. Beaunier, V. Castaing, B. Viana, M. L. Ruiz Gonzalez, J. Gonzalez Calbet, C. Laberty‐Robert, D. Portehault*, Angewandte Chemie International Edition, 135, e202303487 (2023)
  5. Revealing the Elusive Structure and Reactivity of Iron Boride α-FeB, F. Igoa Saldaña, E. Defoy, D. Janisch, G. Rousse, P.-O. Autran, A. Ghoridi, A. Séné, M. Baron, L. Suescun, Y. Le Godec, D. Portehault*, Inorganic Chemistry, 62, 2073 (2023)
  6. Converting silicon nanoparticles into nickel iron silicide nanocrystals within molten salts for water oxidation electrocatalysis, Y. Song, S. Casale, A. Miche, D. Montero, C. Laberty-Robert, D. Portehault, Journal of Materials Chemistry A, 10, 1350 (2022)
  7. A straightforward approach to high purity sodium silicide Na4Si4, Y. Song, I. Gómez-Recio, R. Kumar, C. Coelho Diogo, S. Casale, I. Génois, D. Portehault*, Dalton Transactions, 50, 16703 (2021)
  8. Electron Precise Sodium Carbaboride Nanocrystals from Molten Salts: Single Sources to Boron Carbides, S. Delacroix, F. Igoa, Y. Song, Y. Le Godec, C. Coelho-Diogo, C.  Gervais, G. Rousse, D. Portehault*, Inorganic Chemistry, 60,  4252 (2021)
  9. Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction, R. Kumar, M. Bahri, Y. Song, F. Gonell, C. Thomas, O. Ersen, C. Sanchez, C. Laberty-Robert, D. Portehault*, Nanoscale, 12, 15209 (2020)
  10. In Situ solid–gas reactivity of nanoscaled metal borides from molten salt synthesis, G. Gouget, D. P. Debecker, A. Kim, G. Olivieri, J.-J. Gallet, F. Bournel, C. Thomas, O. Ersen, S. Moldovan, C. Sanchez, S. Carenco, D. Portehault*, Inorganic Chemistry, 56, 9225 (2017)
  11. New route toward nanosized crystalline metal borides with tuneable stoichiometry and variable morphologies, G. Gouget, P. Beaunier, D. Portehault*, C. Sanchez*, Faraday Discussions, 191, 511 (2016) Invited article
  12. Nanoscaled metal borides and phosphides: recent developments and perspectives, S . Carenco, D. Portehault,* C. Boissière, N. Mézailles, C. Sanchez,* Chemical Reviews, 113, 7981, (2013)
  13. A general solution route toward metal boride nanocrystals, D. Portehault,* S. Devi, P. Beaunier, C. Gervais, C. Giordano, C. Sanchez, M. Antonietti, Angewandte Chemie, International Edition, 50, 3262, (2011) Inside cover article, communication VIP.

Multicationic oxides

  1. Crystallization of Manganese(V) Oxides by Hydroflux Synthesis: Control of Anisotropic Growth and Electrochemical Stability, C. V. M. Inocêncio, A. Torres-Pardo, D. Montero, L. Roach, P.-O. Autran, C. Sassoye, C. Aymonier, A. Varela, M. Parras, C. Laberty-Robert, D. Portehault*, Inorganic Chemistry, 10.1021/acs.inorgchem.4c05439
  2. Tuning of Oxygen Electrocatalysis in Perovskite Oxide Nanoparticles by the Cationic Composition, M. Han, I. Gómez-Recio, D. Gutiérrez Martín, N. Ortiz Peña, M. L. Ruiz-González, M. Selmane, J. M. González-Calbet, O. Ersen, A. Zitolo, B. Lassalle-Kaiser*, D. Portehault*, C. Laberty-Robert*, ACS Catalysis, 13, 8, 5733–5743 (2023)
  3. Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance, I. Gómez-Recio, H. Pan, A. Azor-Lafarga, M. L. Ruiz-González, M. Hernando, M. Parras, M. T. Fernández-Díaz, J. J. Delgado, X. Chen, D. Goma Jiménez, D. Portehault, C. Sanchez, M. Cabero, A. Martínez-Arias, J. M. González-Calbet*, J. J. Calvino*, ACS Catalysis, 11, 15026 (2021)
  4. Hydroxyapatites as Versatile Inorganic Hosts of Unusual Pentavalent Manganese Cations, A. Varela, I. Gómez-Recio, L. Serrador, M. Hernando, E. Matesanz, A. Torres-Pardo, M. T. Fernández-Díaz, J. L. Martínez, F. Gonell, G. Rousse, C. Sanchez, C. Laberty-Robert, D. Portehault*, J. M. González-Calbet, M. Parras*, Chemistry of Materials, 32, 10584 (2020)
  5. Structure-activity relationship in manganese perovskite oxide nanocrystals from molten salts for efficient oxygen reduction reaction electrocatalysis, F. Gonell, C. M. Sanchez-Sanchez, V. Vivier, C. Méthivier, C. Laberty-Robert, D. Portehault*, Chemistry of Materials, DOI: 10.1021/acs.chemmater.0c00681
  6. Versatile molten salt synthesis of manganite perovskite oxide nanocrystals and their magnetic properties, F. Gonell, N. Alem, P. Dunne, G. Crochet, P. Beaunier, C. Méthivier, D. Montero, C. Laberty-Robert, B. Doudin, D. Portehault*, ChemNanoMat, 5, 358 (2019)
  7. Nickel-Doped Sodium Cobaltite 2D Nanomaterials: Synthesis and Electrocatalytic Properties, A. Azor, M. L. Ruiz-Gonzalez, F. Gonell, C. Laberty-Robert, M. Parras, C. Sanchez, D. Portehault*, J. M González-Calbet*, Chemistry of Materials, 30, 4986–4994 (2018)
  8. Surface-driven magnetotransport in perovskite nanocrystals, H. L. Thi N’Goc, D. Notemgnou Mouafo, C. Etrillard, A. Torres-Pardo, J.-F. Dayen, S. Rano, G. Rousse, C. Laberty-Robert, J. Gonzales Calbet, M. Drillon, C. Sanchez, B. Doudin*, D. Portehault*, Advanced Materials, 29, 1604745 (2017) – Highlight by the CNRS

Low valence metal oxides

  1. Metal–Support Interactions in Pt-WO3 Heterostructures: Role of WO3 Polymorphism, I. Gómez-RecioC. ThomasC. MéthivierM. L. Ruiz-GonzálezJ. M. González-Calbet*, D. Portehault*, Chemistry of Materials, 35, 19, 7931–7942 (2023)
  2. Differential reactivity of rutile and anatase TiO2 nanoparticles: synthesis and surface states of nanoparticles of mixed valence Magnéli oxides, E. Baktash, J. Capitolis, L. Tinat, C. Larquet, T. H. C. Chan Chang, J.-J. Gallet, F. Bournel, C. Sanchez, C. Carenco, D. Portehault*, Chemistry – A European Journal, 25, 11114 (2019)
  3. Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3, J. Besnardiere, B. Ma, A. Torres-Pardo, G. Wallez, H. Kabbour, J. M. González-Calbet, H. J. Von Bardeleben, B. Fleury, V. Buissette, C. Sanchez, T. Le Mercier, S. Cassaignon, D. Portehault*, Nature Communications, 10, 327 (2019)
  4. Nanoparticles of low-valence vanadium oxyhydroxides: reaction mechanisms and polymorphism control by low-temperature aqueous chemistry, J. Besnardiere, X. Petrissans, F. Ribot, V. Briois, C. Surcin, M. Morcrette, V. Buissette, T. Le Mercier, S. Cassaignon, D. Portehault*, Inorganic Chemistry, 55, 11502 (2016)
  5. Original electrospun core-shell nanostructured magnéli titanium oxide fibers and their electrical properties, V. Maneeratana, D. Portehault,* J. Chaste, D. Mailly, M. Antonietti, C. Sanchez, Advanced Materials, 26, 2654 (2014)
  6. Facile general route toward tunable Magneli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites, D. Portehault,* V. Maneeratana, C. Candolfi, N. Oeschler, I. Veremchuk, Y. Grin, C. Sanchez, M. Antonietti, ACS Nano, 5, 9052, (2011)