Electrocatalysis

We design new materials out of the chemical compositions usually studied. They offer new opportunities to develop catalysts out of Earth-abundant elements. We are currently working on water splitting and other reactions. We also put special emphasis on understanding the mechanisms underlying electrocatalysis on our materials. To do so, we develop methods to address in situ the fate of the materials.

New electrocatalysts

  1. Covalent Transition Metal Borosilicides: Reaction Pathways in Molten Salts for Water Oxidation Electrocatalysis, D. Janisch, F. Igoa Saldaña, E. De Rolland Dalon, C. VM Inocêncio, Y. Song, P.-O. Autran, A. Miche, S. Casale, D. Portehault, Journal of the American Chemical Society,  146, 21824 (2024)
  2. Heterostructured Cobalt Silicide Nanocrystals: Synthesis in Molten Salts, Ferromagnetism, and Electrocatalysis, Y. Song, I. Gómez-Recio, A. Ghoridi, F. Igoa Saldaña, D. Janisch, C. Sassoye, V. Dupuis, D. Hrabovsky, M. L. Ruiz-González, J. M. González-Calbet, S. Casale, A. Zitolo, B. Lassalle-Kaiser, C. Laberty-Robert, D. Portehault*, Journal of the American Chemical Society, 145, 19207 (2023)
  3. Converting silicon nanoparticles into nickel iron silicide nanocrystals within molten salts for water oxidation electrocatalysis, Y. Song, S. Casale, A. Miche, D. Montero, C. Laberty-Robert, D. Portehault, Journal of Materials Chemistry A, 10, 1350 (2022)
  4. Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction, R. Kumar, M. Bahri, Y. Song, F. Gonell, C. Thomas, O. Ersen, C. Sanchez, C. Laberty-Robert, D. Portehault*, Nanoscale, 12, 15209 (2020)
  5. Structure-activity relationship in manganese perovskite oxide nanocrystals from molten salts for efficient oxygen reduction reaction electrocatalysis, F. Gonell, C. M. Sanchez-Sanchez, V. Vivier, C. Méthivier, C. Laberty-Robert, D. Portehault*, Chemistry of Materials, 32, 4241 (2020)
  6. Nickel-Doped Sodium Cobaltite 2D Nanomaterials: Synthesis and Electrocatalytic Properties, A. Azor, M. L. Ruiz-Gonzalez, F. Gonell, C. Laberty-Robert, M. Parras, C. Sanchez, D. Portehault*, J. M González-Calbet*, Chemistry of Materials, 30, 4986–4994 (2018)

In situ studies of electrocatalysis mechanisms

  1. Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol, H. P. Duong, J. G. Rivera de la Cruz, N.‐H. Tran, J. Louis, S. Zanna, D. Portehault, A. Zitolo, M. Walls, D. V. Peron, M. Schreiber, N. Menguy, M. Fontecave , Angewandte Chimie International Edition, 62, e202310788 (2023)
  2. Tuning of Oxygen Electrocatalysis in Perovskite Oxide Nanoparticles by the Cationic Composition, M. Han, I. Gómez-Recio, D. Gutiérrez Martín, N. Ortiz Peña, M. L. Ruiz-González, M. Selmane, J. M. González-Calbet, O. Ersen, A. Zitolo, B. Lassalle-Kaiser*, D. Portehault*, C. Laberty-Robert*, ACS Catalysis, 13, 8, 5733–5743 (2023)
  3. Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation, N. Ortiz Peña, D. Ihiawakrim, M. Han, B. Lassalle-Kaiser, S. Carenco, C. Sanchez, C. Laberty-Robert, D. Portehault*, O. Ersen*, ACS Nano, 13, 11372 (2019)