Geo-inspired pathways towards nanoparticle-based metastable solids

The discovery of new solids is continuously needed to find ways to address the urgent challenges that our society is facing, especially environmental and energetical issues. The search for new solids is in turn intimately linked to the development of synthesis methods. In the current urge for the sustainable synthesis of materials, taking inspiration from Nature’s ways to process matter appears as a virtuous approach and is the core of the GENESIS project: the pivotal idea is to expand the collection of functional inorganic solids and nanomaterials by rational exploratory synthesis inspired by nanosciences and geosciences, which set a framework of synthesis conditions prone to yield new solids. We especially focus on the conditions of formation of gem stones (molten salts and high pressures), and of basaltic rocks (extreme heating and cooling rates). We then use nanoparticles as chemical reagents. These nanometer-scale solids can engage into chemical reactions in milder conditions than those traditionally used in solid-state chemistry. Hence, we use geo-inspired conditions to trigger a new and unexplored reactivity of nanoparticles.
We apply this concept of geo-inspired syntheses to the design of rare materials combining covalent and metallic bonds, hence localized and delocalized chemical bonds at the same time. This combination can bring unique atomic charge states and environments, which can deeply impact electrocatalytic properties applied to the production of dihydrogen from water and to the valorization of carbon dioxide. Such chemical bonds are met in compounds of transition metals with elements like boron, silicon and phosphorus. Only few known solids combine such elements into ternary or quaternary solids, which hints at an unexplored landscape of new materials.
The two overall objectives are then the creation of a synthesis methodology for the vast community of inorganic materials synthesis, and the discovery of new materials.
Associated publications

- Covalent Transition Metal Borosilicides: Reaction Pathways in Molten Salts for Water Oxidation Electrocatalysis, D. Janisch, F. Igoa Saldaña, E. De Rolland Dalon, C. VM Inocêncio, Y. Song, P.-O. Autran, A. Miche, S. Casale, D. Portehault*, Journal of the American Chemical Society, 146, 21824 (2024)

- Unveiling the Potential of Redox Chemistry to Form Size-Tunable, High-Index Silicon Particles, M. A. Parker, S. Khaddad, N. Fares, A. Ghoridi, D. Portehault, S. Bonhommeau, Y. Amarouchene, P. Rosa, M. Gonidec, G. L Drisko, Chemisty of Materials, (2024)

- Galvanic Replacement and Etching of MAX-Related Phases in Molten Salts toward MXenes: An In Situ Study, E. Defoy, M. Baron, A. Séné, A. Ghoridi, D. Thiaudière, S. Célérier, P. Chartier, F. Brette, V. Mauchamp, D. Portehault*, Chemistry of Materials, 35, 19, 8112–8121 (2023). Invited paper as part of the special virtual issue in honor of Prof. Clément Sanchez

- Size-tunable silicon nanoparticles synthesized in solution via a redox reaction, M. A. Parker, M. L. De Marco, A. Castro-Grijalba, A. Ghoridi, D. Portehault, S. Pechev, E. A. Hillard, S. Lacomme, A. Bessière, F. Cunin, P. Rosa, M. Gonidec, G. L. Drisko, Nanoscale, 16, 7958 (2024)

- Metal–Support Interactions in Pt-WO3 Heterostructures: Role of WO3 Polymorphism, I. Gómez-Recio, C. Thomas, C. Méthivier, M. L. Ruiz-González, J. M. González-Calbet*, D. Portehault*, Chemistry of Materials, 35, 19, 7931–7942 (2023). Invited paper as part of the special virtual issue in honor of Prof. Clément Sanchez

- Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol, H. P. Duong, J. G. Rivera de la Cruz, N.‐H. Tran, J. Louis, S. Zanna, D. Portehault, A. Zitolo, M. Walls, D. V. Peron, M. Schreiber, N. Menguy, M. Fontecave , Angewandte Chimie International Edition, 62, e202310788 (2023)

- Heterostructured Cobalt Silicide Nanocrystals: Synthesis in Molten Salts, Ferromagnetism, and Electrocatalysis, Y. Song, I. Gómez-Recio, A. Ghoridi, F. Igoa Saldaña, D. Janisch, C. Sassoye, V. Dupuis, D. Hrabovsky, M. L. Ruiz-González, J. M. González-Calbet, S. Casale, A. Zitolo, B. Lassalle-Kaiser, C. Laberty-Robert, D. Portehault*, Journal of the American Chemical Society, 145, 19207 (2023)

- Molten Salts-Driven Discovery of a Polar Mixed-Anion 3D framework at the nanoscale: Zn4Si2O7Cl2, Charge Transport and Photoelectrocatalytic Water Splitting
R. Kumar, Y. Song, A. Ghoridi, P. Boullay, G. Rousse, C. Gervais, C. Coelho Diogo, H. Kabbour, C. Sassoye, P. Beaunier, V. Castaing, B. Viana, M. L. Ruiz Gonzalez, J. Gonzalez Calbet, C. Laberty-Robert, D. Portehault*, Angewandte Chemie International Edition, 135, e202303487 (2023)

- Tuning of Oxygen Electrocatalysis in Perovskite Oxide Nanoparticles by the Cationic Composition
M. Han, I. Gómez-Recio, D. Gutiérrez Martín, N. Ortiz Peña, M. L. Ruiz-González, M. Selmane, J. M. González-Calbet, O. Ersen, A. Zitolo, B. Lassalle-Kaiser*, D. Portehault*, C. Laberty-Robert*, ACS Catalysis, 13, 8, 5733–5743 (2023)

- Revealing the Elusive Structure and Reactivity of Iron Boride α-FeB
F. Igoa Saldaña, E. Defoy, D. Janisch, G. Rousse, P.-O. Autran, A. Ghoridi, A. Séné, M. Baron, L. Suescun, Y. Le Godec, D. Portehault*, Inorganic Chemistry, 62, 2073 (2023)

- Geoinspired syntheses of materials and nanomaterials
D. Portehault*, I. Gómez-Recio, M. A. Baron, V. Musumeci, C. Aymonier, V. Rouchon, Y. Le Godec, Chemical Society Reviews, 51, 4828 (2022)

- Converting silicon nanoparticles into nickel iron silicide nanocrystals within molten salts for water oxidation electrocatalysis
Y. Song, S. Casale, A. Miche, D. Montero, C. Laberty-Robert, D. Portehault, Journal of Materials Chemistry A, 10, 1350 (2022)

- A straightforward approach to high purity sodium silicide Na4Si4
Y. Song, I. Gómez-Recio, R. Kumar, C. Coelho Diogo, S. Casale, I. Génois, D. Portehault*, Dalton Transactions, 50, 16703 (2021)
